
- (gauche) Image STM de la reconstruction géante (12x12) obtenue sur la surface 6H-SiC(0001) après dépôt de 1 monocouche de Si. (droite) Modèle atomique de la reconstruction (12x12) optimisé en dynamique moléculaire. Les atomes de Si de la surface SiC(0001) sont en vert, ceux de la première couche en jaune, et ceux en orange sont au sommet des pyramides observées sur l’image STM.
Hexagonal 6
H (0001) silicon carbide is used in power microelectronics for its high bandgap energy (3 eV), and in the field of single-photon sources due to these surface states. In both cases, knowledge of surface reconstructions is essential to obtain the best components. Numerous studies based on the sublimation of an excess of silicon allow to discover different reconstructions, among which the (√3×√3)-
R30° [1] and the (3×3) [2] have a known atomic structures, with 1/3 and 13/9 of silicon monolayers. Using a silicon enrichment procedure of the 6
H-SiC (0001) surface, we discovered two other intermediate reconstructions : the giant (12×12) and the (4×8). From the position of the surface atoms observed in scanning tunneling microscopy, we have constructed atomic models by introducing a new type of silicon atoms. These so-called Si-bridge atoms are bonded to two silicon atoms of the terminal plane of the 6
H-SiC(0001) crystal. They allow to make the link between reconstruction (√3×√3)-
R30° and the following reconstructions such as (12×12) and (4×8). Atomic models were validated using molecular dynamics simulations with Tersoff potentials. These simulations showed the stability of the (12×12) up to 600 °C, and the (4×8) up to 900 °C, in good agreement with the experimental observations. In addition, these Si-bridge atoms are at the basis to model two other reconstructions observed experimentally by other teams : the (2√3×2√3)-
R30° [3] and the (2√3×2√13) [4]. The analysis of silicon coverage rates and symmetry elements allowed us to generate a table with the six reconstructions known to date, and to present an unambiguous way of discerning them
in situ by electron diffraction.
- A. Coati, M. Sauvage-Simkin, Y. Garreau, R. Pinchaux, T. Argunova, and K. Ad, Physical Review B 59, 12224 (1999), et autres citations incluses
- J. Schardt, J. Bernhardt, U. Starke, and K. Heinz, Phys- ical Review B 62, 10335 (2000), et autres citations incluses.
- F. Amy, P. Soukiassian, and C. Brylinski, Applied Physics Letters 85, 926 (2004).
- M. Naitoh, J. Takami, S. Nishigaki, and N. Toyama, Applied Physics Letters 75, 650 (1999) ;
L. Li, Y. Hasegawa, T. Sakurai, and I. S. T. Tsong, Journal of Applied Physics 80, 2524 (1996).
Reference
Giant (12×12) and (4×8) reconstructions of the 6H-SiC(0001) surface obtained by progressive enrichment in Si atoms
David Martrou, Thomas Leoni, Florian Chaumeton, Fabien Castanié, Sébastien Gauthier, and Xavier Bouju
Phys. Rev. B 97, 081302(R) – Published 23 February 2018
Contact
-
David Martrou, CEMES (CNRS)
dmartrou chez cemes.fr